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An approximate analytical method is proposed by which linear boundary-value problems in 
heat conduction can be solved for an arbitrary distribution of heat sources and for boundary 

conditions of a general form. 

Much attention is nowadays paid to the problem of finding s,imple and sufficiently accurate approxi- 
mate solutions to boundary-value problems describing thermal fields in various structures. 

For an approximate solution of problems in mathematical physics one uses variational methods [1-3], 
among which the Bubnov-Galerkin method ranks very high because of its simplicity and universality. Even 
more effective in many cases is the Kantorovich method [2] reduced to ordinary differential equations. 
These methods do, however, .have also a number of drawbacks: 

a) from the practical standpoint, the most serious drawback of these methods is the necessity of 
properly choosing the approximating (coordinate) functions which must satisfy either the boundary 
conditions (the Ritz method, the Bubnov-Galerkin method, the collocation method, the method of 
least squares) or the differential equation of the boundary-value problem (the Treffts method, the 
collocation method, the method of least squares) and this is rather difficult; 

b) the properties of the operator in a boundary-value problem are accounted for exactly by a finite 
number of constants inthe sought solution and by the sum of tlle products of these constants with 
the coordinate functions. If one tries to improve the accuracy by increasing the number of terms 
in the approximating expression, this will also result in much more complicated calculation for- 
mulas and will often actually worsen the accuracy on account of the accumulated computation er- 
ror; therefore, this device is not always effective. 

The method developed by Kantorovich partly overcomes these drawbacks, because here one considers 
the properties of the operator on a single independent variable only and its dependence on the other vari- 
ables one stipulates a priori, which nevertheless improves the accuracy appreciably [2]. 

The authors propose an approximate analytical method for solving linear boundary-value problems 
which is entirely free of these drawbacks: it does not require matching the coordinate functions and, in a 
sense, takes into account the properties of the operator on all variables. 

The basic concept of this method will be illustrated in the problem of finding the steady-state tem- 
perature field inside a homogeneous anisotropic parallelepiped [-/i -< ~-- li, ~ = x, y, z[ with a stepped and 
symmetrical distribution of heat sources (Fig. i), assuming that the heat transfer from it to the ambient 
medium follows Newton's law. 

If we consider the symmetry of the problem, the latter will be reduced to finding the function which 
satisfies the equation.of heat conduction: 

02N ~ s O~N + ~z O~N 
e~ Ox--- 7 -  , u @---7- Oz-- ~ -  = - -  [ (x), (1) 
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Fig. 1. Pa ra l l e l ep iped  with s tepped 

h e a t  source  s. 

/(x) = {~ for ~ - - 6 < x ~ + 6 ,  
elsewhere, inside the cube for [0 ~< i ~< I, i = x, 9, z] 

and the cons t ra in t s  

ON 
[ ~ i  + BiN]~= = 0 ,  [--~-]~=o=0 (2) 

at  its boundar ies .  

The following d imens ion less  va r i ab l e s  and p a r a m e t e r s  have 
been introduced here:  

L,: ' L~ ' qvL~ 

We proceed  to solve the boundary-va lue  p rob l em (1)-(2). in the f i r s t  s tage we ave rage  the unknown 
function in the Oyz plane,  for  which we apply the ope ra to r  Iy z, 

I 1 

Iu~ IN] = S .( N (x, g, z) dgdz ---- N x (x) ---- N~ 
0 0 

to the different ia l  equation (1) with the cons t ra in t s  at  boundar ies  x = 0, 1. 

In view of the l inear i ty  of ope ra to r  Iy z, we apply it t e r m  by te rm:  
1 1 

[~ 0~N q = ~. 0 3  [ f Ndgez = ~x ; 
Z~ L X Ox~ J ~ ox ~ L j ex ~- 

0 0 

1 ! ! 

[~ O~N]=~fezC O~N =~ C[~ _ON I ]ez 
I~ZL ~ J  . 2 oy~ d.~ Y.JLoyly=, oyl~,=oJ " 

0 0 0 

Aecording to the boundary  conditions (2), 

ON 

Consequently,  
1 

I S N ( x ,  y =  1, z)dz 

0 

with the coefficient  
1 

N (x, y = 1, z) dz 
~ y  ~ 0 

N~ ' 

cha rac t e r i z ing  the nonuniformity of the t e m p e r a t u r e  field at a sect ion through absc i s s a  x. Coefficient  ~y 
is a funetion of x, but calculat ions for  s e v e r a l  specif ic  eases  have shown that this re la t ion  is weak and 
may  be rep laced  - to the f i r s t  approximat ion  - by the ra t io  of ave rage  values o f  the r e spec t ive  functions, 
i . e . ,  

1 1 

S [ N(x, y = 1, z )~z  
9 v ~ v =  o o , __ N s ( 9 =  I ) ,  (3) 

S N~dx Nv 

to be used in the subsequent  ana lys i s .  Analogously,  

ly~ [e, O2N ] = - -  e~B,~,NX, ~ = Ns (z = 1). 
a P  ] Nv ' 

~ [r (x)] = r(x). 
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Adding the r e s u l t s  of the Iy z ope ra t ion  to Eq. (1), we a r r i v e  at the fol lowing o r d i n a r y  d i f fe ren t ia l  
equat ion in Nx: 

d~Nx 2 N 1 p. ~ = - - - -  [ (x), 
d x  2 g x 

P x  = 
E x 

Apptying  o p e r a t o r  Iy z a lso  to the c o n s t r a i n t s  in (2) at  x -- 0, 1 we obtain  the bounda ry  condi t ions  fo r  
funct ion Nx: 

(4) 

[< ] dx q- B~N~ .=~ = 0, - -  .=0= 0. (5) 

In tegra t ing  Eq. (4) and sa t i s fy ing  condi t ions  (5) will  y ie ld  

2 
No~ = ~ (%~ -- %~), 

exP. 
f 

A-chp~x [ O, x~<. ~- -6 ,  

%~ = { sh2 P~ 2 ~ - - 6 < x < ~ + 6 ,  

( P~thp~ ) -1' 1 

t 

A=G~xshp, ,Schpx( l - -~)  [ P-~ + thpx(1 --~)1. 

We now r e t u r n  to the o r ig ina l  equat ion (1), r e w r i t i n g  it as  

02N 02N O2N 
%-d~-y ~ + ~ --az~ t (x) - ~ a x ~  

With the aid of  Eq. (4) and app rox ima t ing  the l a s t  equat ion 

O~N d2N. 
_~- = p , G - ! [ ( x ) ,  (7) 

Ox z dx 2 e~ 

we obtain 

02M O~M 
% ~ + ~z 0z,~ - 2 ( % ~ -  %~), (8) 

where  M(y, z; x) is the app rox ima t ion  to the unknown funct ion N based  on a s s u m p t i o n s  (3) and (7). Here  x 
a p p e a r s  a l r e a d y  as  a p a r a m e t e r .  At  the bounda r i e s ,  M m u s t  sa t i s fy  the o r ig ina l  condi t ions  (2) 

1 Oi , B~M , I =0 ,  ~ e=0 = 0 ,  i = y ,  z. (9) 

In o r d e r  to solve the b o u n d a r y - v a l u e  p r o b l e m  (8)-(9), we again  use  the s a m e  a l g o r i t h m  to r educe  
the p r o b l e m  to an o r d i n a r y  d i f fe ren t ia l  equation.  Apply ing  o p e r a t o r  1~ z 

1 

I~ [M] = ; Mdz = My, 
o 

we a r r i v e  at  the b o u n d a r y - v a l u e  p r o b l e m  with r e s p e c t  to My: 

d~Mu 2 2 pyM u = - - _ _  (%~r - -  %~), 
dY 2 % 

2 gz~zBz 
Pv 

% (11) 

dy ~=~ k dy Jy=o 
and f r o m  h e r e  

2 
My = ~ (%~ - -  %~) cp u, 

%Pv 
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TABLE 1. Relat ive E r r o r s  (51q) of the F i r s t  Approximat ions  to N 
Obtained by ~heAveraging Method (O), by the G a t e r k i n - R i t z  Method 
(G-R) and also by the Kantorovich Method (K) for  the Center  Point 
of a Pa ra l l e l ep iped  

Lz/Ly [ o [ 0,2 0,5 

Lz/L x 0 G-R t K I O G-R K O [G-R K 

o 
0,2 
0,5 
1 

0,0 
2,1 
2,6 
9,4 

t 
56,6 t 25,0 2,1 
53,7 ] 27,6 3,8 
36,8 25,2 6,3 
30,4 26,1 12,1 

53,7 
50,2 
35,3 
27,8 

22,3 
24,4 
23,0 
24,2 

2,6 36,8 
4,8 35,3 
8,2 25,8 

17,9 22,1 

l 

K O t G-R 

9,4 9,4 I 30,4 
i 

11,6 10,1 I 27,8 
12,8 14,9 22,1 
17,2 20,9 15,6 

4,0 
4,7 
6,7 
9,8 

chp~y , ( P~thPu )-~. (12) 

In the final s tage of the solution we rep lace  32M/Oy 2 in Eq. (8) by i ts  approximat ion  

d2M~t 2 2 
= PyM~ ~ - -  (%~ - -  %,,), 

dy "~ s u 

and, accord ing  to (10), reduce  the or ig inal  boundary-va lue  p r o b l e m  (1)-(2) to a one-d imens iona l  one: 

d2~ 2 
dz ~ = ~ ~ (r - -  %x) r (13) 

where  N is the approximat ion  for  the unknown function based  on type (3) and (7) assumpt ions ,  which have 
been made for  all  s tages  of the solution. 

Integrat ion of Eq. (13) with the cor responding  boundary conditions (14) yields  the approx imate  solu-  
tion to the or ig inal  boundary-va lue  p r o b l e m  (1)-(2) in the fo rm 

7v = t__ ( % . _  %.) %%, %,= I + B. 
8 z 

In o r d e r  to be able to use formula  (15) for  calcula t ions ,  one mus t  know the p a r a m e t e r s  Px and py, 
which in turn a r e  e x p r e s s e d  through the nonuniformity f ac to r s  ~y and ~z" The la t te r  will be de te rmined  
f r o m  (3) and the approx imate  solution (15): 

~. Ns(~=l)  i ~vs (y=1)_  l 
= N , ,  

Jtv 1 + --3- m 

m = _ p~.th Pu _, 2 e~B~z 
py ~ t h  p~, PY ---- s ~  

Let  u s ' e x a m i n e  the e r r o r  of the approx imate  solution (15). Methods of es t imat ing  the e r r o r  of approx imate  
solutions to boundary-va lue  p r o b l e m s  [1] have sti l l  not been developed well enough to be  appl icable to other  
than the m o s t  s imple  cases ,  but for  p r a c t i c a l  pu rpose s  we will a s s e s s  the e f fec t iveness  of our  method by 
compar ing  the approx imate  solutions with known exact  solutions [1-3]. 

We will cons ider  two specia l  c a se s  of the p rob lem.  

1. The heat source  occupies  the en t i re  space  inside the para l le lep iped ,  i . e . ,  $ = 6 = 0.5. Inser t ing  
this value for  ~ and 6 into (15), we obtain an expres s ion  for  the t e m p e r a t u r e  field here :  

l (16) ~ / =  ~2e--cPx~P~%' r = I--fflx chp~x 
ch p,: 

It follows f r o m  physica l  cons idera t ions  that the l a rge s t  e r r o r s  occur  at B i -~ ~ ,  i . e . ,  in the boundary-va lue  
p r o b l e m  with cons t ra in t s  of the f i r s t  kind and that, the re fo re ,  it makes  sense  to evaluate  the e r r o r  of solu-  
tion (16) jus t  for  this e x t r e m e  case .  
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T A B L E  2. Re la t ive  E r r o r  (5I~) of the Mean Value of N on 
the Surface  of the Source  

Lg/Lz 

Lx 
- - I  

Lz 

1 1,25 

10,0 8,3 

1,5 2 

6,9 5,5 

3 5 

4,5 4,2 

I0 co 

5,0 4,8 

Computation formulas are easily Obtained for the general case (16) by going to the limit B i ~ co and 

letting k m = k z, L m =L z. 

Here Bz~ z ~ 3, By~y~ m, and ~2 i ~  1. Consequent ly ,  

chp~x ) ( 1 - -  chp~y ) ( l _ z ~ )  ' 
ch p~ ch pg 

(17) 2 2 3 p~ th py 2 m% q- 3 p~ ----- - -  m - -  , P x  = 

The exact solution to this particular problem is given in [4], and we will compare our approximate 
solution (17) with it. The results have been compiled in Table 1, with the relative errors  of the approxi- 
mate solution 51~ given for the center point 0(0, 0, 0). 

The first approximations obtained by the proposed method of averaging are compared also with those 
obtained by the Galerkin-Ritz and by the Kantorovich method. Table 1 indicates that averaging yields, as 
a rule, a better accuracy. 

Calculations have shown that m ~ 3, which suggests the following universal approximation formula 
for ~i: 

~ =  1 
B~ " (18) 

1 + - -  
3 

The most accurate approximate solution was obtained with this choice of values for the nonuniformity 

factor. 

2. The heat source is located on the boundary x = i, which is thermally insulated. 

The temperature field in this case is highly nonuniform and can be described by expression (15) with 

0, ~ = i, and 6 ~ 0. Furthermore, considering that qv = Q/26LzLy ~ qs = Q/LzLy, N must be ad- B X 

di t ional ly  mul t ip l ied  by 1/25.  As  a r e s u l t  of the l imi t ing  p r o c e s s  at  By, B z ~ ~ ,  we have 

~ _  p~ chp~:x (1 chpYg )( l--P),  
2 sh p~ ch py 

p ~ = - -  p~--  m , % ~-~yj  s ~ =  \ L ~ j .  2 

%'  e~ ' p y - - t h p y  

The exac t  solut ion in [4] appl ies  to the case  w h e r e  the hea t  s o u r c e  occup ies  one side,  while in ou r  
s y m m e t r i c a l  ca se  it occup ies  two opposi te  s ides ,  but  f o r  our  ca se  too the r e s p e c t i v e  exac t  so lut ion can be 
obta ined  by applying the supe rpos i t i on  p r inc ip le .  

An i m p o r t a n t  quant i ty  c h a r a c t e r i z i n g  the t h e r m a l  r e s i s t a n c e  in our  ease  is the m e a n - i n t e g r a l  value 
of  the unknown funct ion N at the s o u r c e  s u r f a c e  [4]. The va lues  of this  funct ion for  va r i ous  r a t i o s  of 
p a r a l l e l e p i p e d  d i m e n s i o n s  w e r e  d e t e r m i n e d  f r o m  the a p p r o x i m a t e  solut ion (19) and c o m p a r e d  with its 
exac t  va lues .  The r e l a t ive  e r r o r s  a r e  shown in Tab le  2. Evident ly ,  this quanti ty is a l m o s t  independent  
of  the p a r a m e t e r  L z / L  x and, f o r  this  r e a son ,  r e s u l t s  a r e  shown fo r  L z / L  x = 1 only.  

We note,  in conc lus ion ,  that  solut ion (15) m u s t  be t r e a t ed  as  the f i r s t  approx imat ion .  

Li  
l i  
Xi 

Q 

N O T A T I O N  

is the parallelepiped dimension along the Oi axis; 
is the half-dimension; 
is the thermal conductivity;- 
is the coefficient of heat transfer from the boundary i = 1; 
is the total power of heat sources; 
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qv 
qs 
ta 
t 
Bi 
Lm, km 
N 
Ns(i = 1) 
NV 

5N = ((N-N)/N)100% 

is the volume density of heat sources; 
is the surface density of heat sources; 
is the ambient temperature; 
is the body temperature; 
is the Biot number; 
are the scale values of the respective quantities; 
is the dimensionless temperature; 

is the meat] value of the function at the boundary i = i; 
is the mean-over-volume value of N; 

is the relative error of the approximate solution. 

1, 
2. 

3. 

4. 
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