SOLVING BOUNDARY-VALUE PROBLEMS IN HEAT
CONDUCTION BY THE METHOD OF SUCCESSIVELY
AVERAGING THE UNKNOWN FUNCTION

A. Akaev and G. N. Dul'nev UDC 536.24.01

An approximate analytical method is proposed by which linear boundary-value problems in
heat conduction can be solved for an arbitrary distribution of heat sources and for boundary
conditions of a general form.

Much attention is nowadays paid to the problem of finding simple and sufficiently accurate approxi-
mate solutions to boundary-value problems describing thermal fields in various structures.

For an approximate solution of problems in mathematical physics one uses variational methods [1-3],
among which the Bubnov—Galerkin method ranks very high because of its simplicity and universality. Even
more effective in many cases is the Kantorovich method [2] reduced to ordinary differential equations.
These methods do, however, have also a number of drawbacks: )

a) from the practical standpoint, the most serious drawback of these methods is the necessity of
properly choosing the approximating (coordinate) functions which must satisfy either the boundary
conditions (the Ritz method, the Bubnov—Galerkin method, the collocation method, the method of
least squares) or the differential equation of the boundary-value problem (the Treffts method, the
collocation method, the method of least squares) and this is rather difficult;

b) the properties of the operator in a boundary-value problem are accounted for exactly by a finite
number of constants in the sought solution and by the sum of the products of these constants with
the coordinate functions. If one tries to improve the accuracy by increasing the number of terms
in the approximating expression, this will also result in much more complicated calculation for-
mulas and will often actually worsen the accuracy on account of the accumulated computation er-
ror; therefore, this device is not always effective.

The method developed by Kaatorovich partly overcomes these drawbacks, because here one considers
the properties of the operator on a single independent variable only and its dependence on the other vari-
ables one stipulates a priori, which nevertheless improves the accuracy appreciably [2].

The authors propose an approximate analytical method for solving linear boundary-value problems
which is entirely free of these drawbacks: it does not require matching the coordinate functious and, in a
sense, takes into account the properties of the operator on all variables.

The basic concept of this method will be illustrated in the problem of finding the steady-state tem-
perature field inside a homogeneous anisotropic parallelepiped [-1; =i = I, 1 =X, y, z] with a stepped and
symmetrical distribution of heat sources (Fig. 1), assuming that the heat transfer from it to the ambient
medium follows Newton's law.

If we consider the symmetry of the problem, the latter will be reduced to finding the function which
satisfies the equation-of heat conduction:
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We proceed to solve the boundary-value problem (1)-(2). In the first stage we average the unknown
function in the Oyz plane, for which we apply the operator Iyz,
11

I,INI = [ [N, 9, 2)dydz =N, (x) =N,
66 .
to the differential equation (1) with the constraints at boundaries x = 0, 1.

In view of the linearity of operator Iyz, we apply it term by term:
1

1
PN & &N,
Iyz[sx*ax—2]=8xa—x2—[s‘ deydz]=ex dx2 ;
0 0

1 1

1
2 Nl 2
Iyz[ay L) ]=sy f‘”j N e Hﬂ _9N ]dz,
oy | . 0y* JLOYly=1 040
1] 1] 0
According to the boundary conditions 2),
[QI_V_ __a_N_ ]-_—_..ByN(x, y=1, 2).
0y ly=1  OY ly=0
Cousequently,
1
. I SN(x, y= 1, 2)dz
Iy [89_3;2—] = —¢B, XN(x’ y=1, z)dz:-syBy ° N, N.=—e,Byp,N,

0

with the coefficient
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characterizing the nonuniformity of the temperature field at a section through abscissa x. Coefficient by
is a function of x, but calculations for several specific cases have shown that this relation is weak and
may be replaced — to the first approximation — by the ratio of average values of the respective functions,
i.e., -
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Adding the results of the Iy operation to Eq. (1), we arrive at the following ordinary differential
equation in Nx:
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Applying operator iy also to the constraints in (2) at x = 0, 1 we obtain the boundary conditions for
function Ny:

, E—d << LEHS, (6)
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Integrating Eq. (4) and satisfying conditions (5) will yield
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We now return fo the original equation (1), rewriting it as
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With the aid of Eq. (4) and approximating the last equation
o°N d*N, > 1
ox? = dxz = Px Nx"—'é:xf(x)v (7)
we obtain
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where M(y, z; X) is the approximation to the unknown function N based on assumptions (3) and (7). Here x
appears already as a parameter. At the boundaries, M must satisfy the original conditions (2)
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In order to solve the boundary-value problem (8)-(9), we again use the same algorithm to reduce
the problem to an ordinary differential equation. Applying operator I,

1
LM = | Mdz = M,
6
we arrive at the boundary-value problem with respect to My:
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and from here
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TABLE 1. Relative Errors (6N) of the First Approximations to N
Obtained by the Averaging Method (O}, by the Galerkin—Ritz Method
(G—R) and also by the Kantorovich Method (K} for the Center Point
of a Parallelepiped

Ly | 0
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ty,] O |G-k} X | o |G-k] kX | 0 |6=R| X | 0 je-R| k

0 10,0 |566{2.,0] 2,1/53,7]22,3! 2,6368| 9,4] 9,4/30,4] 4,0
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In the final stage of the solution we replace azM/‘E)y2 in Eq. (8) by its approximation

&M 2 2
—dz;y“ = pM, — ;; @1 — Pash
and, according to (10), reduce the original boundary~value problem (1)-(2) to a one~dimensional one:
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where N is the approximation for the unknown function based on type (3) and (7) assumptions, which have
been made for all stages of the solution.

Integration of Eq. (13) with the corresponding boundary conditions (14) yields the approximate solu-
tion to the original boundary-value problem (1)-(2) in the form

2 2
— 2= 15
3 {15)
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In order to be able to use formula (15) for calculations, one must know the parameters p, and Py
which in turn are expressed through the nonuniformity factors z'ﬁy and zﬁz. The latter will be determined
from (3) and the approximate solution (15):
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Let us examine the error of the approximate solution (15). Methods of estimating the error of approximate
solutions to boundary-value problems [1] have still not been developed well enough to be applicable to other
than the most simple cases, but for practical purposes we will assess the effectiveness of our method by
comparing the approximate solutions with known exact solutions [1-3].

We will consider two special cases of the problem.

1. The heat source occupies the eatire space inside the parallelepiped, i.e., £ =& = 0.5. Isertiag
this value for £ and § into {15), we obtain an expression for the temperature field here:
chpx
chp,

N= PPy P P = 1—Q, (16)

%,

It follows from physical considerations that the largest errors ocour at Bj = «, i.e., in the boundary-value
problem with constraints of the first kind and that, therefore, it makes sense to evaluate the error of solu-
tion (18) just for this extreme case.
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TABLE 2. Relative Error (6ﬁ) of the Mean Value of N on
the Surface of the Source

tgr, |1 Jus | s | 2 | s | s [ w0 |
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Computation formulas are easily ¢btained for the general case (16) by going to the limit Bj — <« and
letting Ay = Ay, Ly = Ly,

Here By, — 3, Byiy - m, and ; — 1. Consequently,
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The exact solution to this particular problem is given in [4], and we will compare our approximate
solution (17) with it. The results have been compiled in Table 1, with the relative errors of the approxi-
mate solution 6N given for the center point 0(0, 0, 0).

The first approximations obtained by the proposed method of averaging are compared also with those
obtained by the Galerkin—Ritz and by the Kantorovich method. Table 1 indicates that averaging yields, as
a rule, a better accuracy.

Calculations have shown that m =~ 3, which suggests the following universal approximation formula
for y;:

Y= B, (18)

The most accurate approximate solution was obtained with this choice of values for the nonuniformity
factor.

2. The heat source is located on the boundary x = 1, which is thermally insulated.

The temperature field in this case is highly nonuniform and can be described by expression (15) with
By— 0, &=1, and § — 0. Furthermore, considering that qy = Q/Z(SLZLy —qg = Q/LZLy, N must be ad-
d1t1ona11y multiplied by 1/26. As a result of the limiting process at By, By = =, we have

N P ChPaX (1_ chpyy )(1—22),
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The exact solution in {4] applies to the case where the heat source occupies one side, while in our
symmetrical case it occupies two opposite sides, but for our case too the respective exact solutlon can be

obtained by applying the superposition principle.

(19)

3
py=—

. An important quantity characterizing the thermal resistance in our case is the mean-integral value
of the unknown function N at the source surface.[4]. The values of this function for various ratios of
parallelepiped dimensions were determined from the approximate solution (19) and compared with its
exact values. The relative errors are shown in Table 2. Evidently, this quantity is almost mdependent
of the parameter Lz/Lx and, for this reason, results are shown for LZ/LX =1 only.

We note, in conclusion, that solution (15) must be treated as the first approximation.

NOTATION
L; is the parallelepiped dimension along the Oi axis;
li is the half-dimension;
A is the thermal conductivity;-
o is the coefficient of heat transfer from the boundary i = 1;
Q is the total power of heat sources;
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qvy is the volume density of heat sources;

as . is the surface density of heat sources;

ty is the ambient temperature;

t is the body temperature;

Bj : is the Biot number;

Lm, M are the scale values of the respective quantities;

N is the dimensionless temperature;

Ng@i =1) is the mean value of the function at the boundary i = 1;
Ny is the mean-over-volume value of N;

6N = ((ﬁ-—N)/N)lOO% is the relative error of the approximate solution.
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